The infinite series for $~\sin x~$ is given by
$\displaystyle\sin x=x-\frac{{{x}^{3}}}{3!}+\frac{{{x}^{5}}}{5!}-...+\frac{{{\left( -1 \right)}^{n}}{{x}^{2n+1}}}{(2n+1)!}+...\,$
On the interval $~-2\le x\le 2\,$, what is the minimum number of terms necessary to approximate the value of $~\sin x~$ accurate to the nearest $~0.01\,$?
[[☃ math-keypad 1]]