**Complete the equations to solve $\purpleC{6} \times \blueD{2} \times \greenD4$ two different ways.**
$\purpleC{6} \times \blueD{2} \times \greenD4 ~=~(\purpleC{6}\times\blueD{2}) \times\greenD4$
$\phantom{\purpleC{6} \times \blueD{2} \times \greenD4 }~=~$ [[☃ input-number 1]] $ \times ~\greenD4$
$\phantom{\purpleC{6} \times \blueD{2} \times \greenD4 }~=~$ [[☃ input-number 2]]
$$
$\purpleC{6} \times \blueD{2} \times \greenD4 ~=~ \purpleC{6}\times(\blueD{2}\times\greenD4)$
$\phantom{\purpleC{6} \times \blueD{2} \times \greenD4} ~=~ \purpleC{6}\times ~$[[☃ input-number 3]]
$\phantom{\purpleC{6} \times \blueD{2} \times \greenD4} ~=~ $ [[☃ input-number 4]]