Consider the table with function values for $f(x)=\dfrac{\cos2x-\cos3x}{x^2}$ at $x$-values near zero.
$\qquad x$|$f(x)$
-:|:-
$-0.1$|$2.473009$
$-0.01$|$2.499729$
$-0.001$|$2.499997$
$0.001$|$2.499997$
$0.01$|$2.499729$
$0.1$|$2.473009$|
**From the table, what does**
$\qquad \displaystyle \lim_{x\to 0}\dfrac{\cos2x-\cos3x}{x^2}$
**appear to be?**
The limit appears to be [[☃ math-keypad 1]]