If, using the direct comparison test, I compare each of the series listed below to $~~\displaystyle\sum\limits_{n=1}^{\infty }~{\frac{n^2}{2n^2+3}}\,$, what can I conclude?
I. $\qquad\displaystyle\sum\limits_{n=1}^{\infty }{\frac{n^2}{2n^2+4}}$
[[☃ radio 1]]
II. $\qquad\displaystyle\sum\limits_{n=1}^{\infty }~{\frac{2n^2}{2n^2+3}}$
[[☃ radio 2]]
III. $\qquad\displaystyle\sum\limits_{n=1}^{\infty }~{\frac{n}{2n^2+3}}$
[[☃ radio 3]]