$\overleftrightarrow{AB}$ and $\overleftrightarrow{CD}$ are parallel lines.
The interior angles of a triangle sum to $180^\circ$.
**Complete the equations to prove that alternate interior angles always have equal measure.**

|||
- | -: | -
$\text{In terms of } \purple w \text{ and a number} \\\text{in degrees,}$ | $\green v=$ | [[☃ expression 2]]
$\text{In terms of } \purple w \text{ and a number} \\\text{in degrees,}$ | $\pink u=$ | [[☃ expression 3]] |
$\text{Combining these equations to } \\ \text{get } \pink u \text{ in terms of } \green v,$ | $\pink u=$ | [[☃ expression 4]]