Consider the table with function values for $f(t)=\dfrac{t^8-1}{t^5-1}$ at $t$-values near $1$. There are two values missing in the table.
Use a calculator to evaluate $f(t)$ at $t=0.99999$ and $t=1.00001$, and enter these numbers in the table rounded to the nearest $0.000001$.
**From the table, what does**
$\qquad \displaystyle \lim_{t\to 1}\dfrac{t^8-1}{t^5-1}$
**appear to be?**
$t$|$f(t)$
-:|:-
$0.999$|$1.597603$
$0.9999$|$1.599760$
$0.99999$|[[☃ input-number 1]]
$1.00001$|[[☃ input-number 2]]
$1.0001$|$1.600240$
$1.001$|$1.602403$|
The limit appears to be [[☃ input-number 3]]