Consider the table with function values for $f(t)=\dfrac{t^3-2t^2+1}{t^3-1}$ at $t$-values near $1$. There is one value missing in the table.
Use a calculator to evaluate $f(t)$ at $t=1.0001$, and enter this number in the table rounded through $6$ significant figures.
**From the table, what does**
$\qquad \displaystyle \lim_{t\to 1}\dfrac{t^3-2t^2+1}{t^3-1}$
**appear to be?**
$t$|$f(t)$
-:|:-
$0.99$|$-0.340022$
$0.999$|$-0.334000$
$0.9999$|$-0.333400$
$1.0001$|[[☃ input-number 1]]
$1.001$|$-0.332667$
$1.01$|$-0.326689$|
[[☃ radio 1]]