Consider the table with function values for $f(t)=\dfrac{1+t^2}{1-t^2}$ at $t$-values near $1$.
$t$|$f(t)$
-:|:-
$0.9$|$9.52632$
$0.99$|$99.50251$
$0.999$|$999.50025$
$1.001$|$-1000.50025$
$1.01$|$-100.50249$
$1.1$|$-10.52381$|
**From the table, what does**
$\qquad \displaystyle \lim_{t\to 1}\,\dfrac{1+t^2}{1-t^2}$
**appear to be?**
[[☃ radio 1]]